

February 28, 2021

 1/6

Implementation Note

snote.eu.com exploits the F5 algorithm to hide user information in the DCT coefficients of a JPEG image. The

algorithm proposed in the scientific literature has been slightly modified to increase the image steganography

capacity and avoid that, in the face of a continuous reuse of the image, the quality of the image is

deteriorated due to the average reduction of the coefficient’s values.

1. F5 algorithm

The F5 algorithm [1,2] is defined by the couple of the embedding and extracting procedures. Both exploit the

following LSBF5 function that modify the lower significant bit of the coefficient x.

𝐿𝑆𝐵𝐹5(𝑥) = {
1 − 𝑥 𝑚𝑜𝑑 2 𝑓𝑜𝑟 𝑥 < 0

𝑥 𝑚𝑜𝑑 2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The embedding and extracting procedures perform as follow.

Embedding. Embedding message m{0,1} in JPEG image xXn using the F5 algorithm (no matrix embedding

employed).

// Initialize a PRNG using stego key (or passphrase)

//Input: message m{0,1}, quantizied DCT coefficients xXn

Path = Perm(n); // Perm(n) is a pseudo-random permutation of {1,2,…n}

y=x;

i=1; j=1; // i message index, j coefficient index

while (i  m) & (j  n) {

if (x[Path[j]]  0) & (x[Path[j]] is not DC term) {
if LSBF5(x[Path[j]]) = m(i) {i=i+1;} // equal no change to y

else { // flip y

y[Path[j]] = x[Path[j]] - sign([Path[j]])

if y[Path[j]]  0 {i=i+1;} // zero do not embed m

// next coefficient

}

}

j=j+1;

} // y are stego DCT coefficients coveying i message bits

https://snote.eu.com/

February 28, 2021

 2/6

Extracting. Extracting message m{0,1} from JPEG stego image yXn embedded the F5 algorithm (no matrix

embedding employed).

// Initialize a PRNG using stego key (or passphrase)

// Input: quantizied DCT coefficients yXn

Path = Perm(n); // Perm(n) is a pseudo-random permutation of {1,2,…n}

i=1; j=1; // i message index, j coefficient index

while(j  n) {

if (y[Path[j]]  0) & (y[Path[j]] is not DC term) {
m[i] = LSBF5(y[Path[j]]) {i=1+1;}

}

j=j+1;

} // Read the header of extracted bits to find the message length and

 // truncate m.

As we can see the embedding operation reduce the coefficient size for which we have not

LSBF5(x[Path[j]]) = m(i)

by 1, i.e.

y[Path[j]] = x[Path[j]] - sign([Path[j]])

either the coefficient is positive or negative.

2. F5* algorithm

In the plausible hypothesis of falling into the "else" part of the embedding procedure for half the bits of the

message, each writing action will correspond to a reduction of a number of coefficients equal to 50% of the

length of the message. Let consider a message long as the number of available coefficients (i.e., a message

of whom size corresponds to the steganography image capacity), at each iteration, namely at “save” click,

the 50% of the coefficient will be decreased by |1| that corresponds to both an image quality degradation

and a steganography capacity reduction.

In order to reduce the impact of the F5 steganography on the image quality (and capacity), snote.eu.com has

slightly modified the F5 embedding procedure. The idea behind the change is to increase the absolute value

of the odd coefficients and decrease that of the even ones, so for example the coefficient 1 (or -1) will become

2 (or -2) respectively, while the coefficient 2 (or -2) will become 1 (or -1). This choice significantly increases

the image capacity as coefficients equal to ±1 are available for steganography as well.

https://snote.eu.com/

February 28, 2021

 3/6

First, the LSBF5 function is modified as follow (where the % operator Is the reminder that differ from the

mod operator only for negative values):

𝐿𝑆𝐵𝐹5
∗ (𝑥) = {

1 − 𝑥 % 2 𝑓𝑜𝑟 𝑥 < 0
𝑥 % 2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Second, the sign function of the embedding procedure is modified as follow

sign*(x) = if (x  0) then { // positive values

 if x % 2 = 0 then 1 // even

 else -1 // odd

 } else { // negative values (reverse)

 if 1 + x % 2 = 0 then 1 // odd

 else -1 // even

 }

// Initialize a PRNG using stego key (or passphrase)

//Input: message m{0,1}, quantizied DCT coefficients xXn
Path = Perm(n); // Perm(n) is a pseudo-random permutation of {1,2,…n}

y=x;

i=1; j=1; // i message index, j coefficient index

while (i  m) & (j  n) {

if (x[Path[j]]  0) & (x[Path[j]] is not DC term) {
if LSBF5(x[Path[j]]) = m(i) {i=i+1;} // equal no change to y

else { // flip y

y[Path[j]] = x[Path[j]] – sign*([Path[j]])

if y[Path[j]]  0 {i=i+1;} // zero do not embed m

// next coefficient

}

}

j=j+1;

} // y are stego DCT coefficients coveying i message bits

For instance, we have
x sign*(x) next coeff

-3 1 -4

-2 -1 -1

-1 1 -2

1 -1 2

2 1 1

3 -1 4

The extraction procedure is not modified as the flipping method works either if you increase or decrease

the coefficient.

February 28, 2021

 4/6

3. DCT coefficients range, and flipping

The range of possible DCT coefficient values is obtained by the formula

The argument of the summation is of the magnitude of 𝑠𝑥𝑦 times two values which are at most 1 (absolute

value). So still 8 bits. You are summing 8×8=64 of those values, so 26×28=214. But you also divide this by 14

so the maximum value requires 12 bits. You also have to consider that this value is obtained only when u

and v are 0, and in that case 𝐶𝑢 = 𝐶𝑣 =
1

√2
 so 𝐶𝑢𝐶𝑣 =

1

2
, that is another bit is unneeded. Some other checks

are required when only 𝑢=0 or 𝑣=0, but overall, you will need 11 bits at most.

If you represent the coefficient as a short (i.e., a signed integer type in C99) your range is 211 = 2048 large

and goes from -1024 to 1024.

And we have

x sign*(x) next coeff

-1024 -1 -1023

-1023 1 -1024

-1022 -1 -1021

1022 1 1021

1023 -1 1024

1024 1 1023

February 28, 2021

 5/6

4. Histograms

Consider the classical “Lena” image (74KB 512x512 RGB)

we embed in the image a pseudo-random 1024-character string, the DCT coefficient histogram in the range

[-25, 25] change as described in figure 1 and 2.

Figure 1

February 28, 2021

 6/6

Figure 2

The image has 91776, no zero / no DC, DCT coefficients. F5* can hide in this image at most an 11,2 KB size

message while F5 is able to mask only 5,4 KB size message (-51%). Our test message is 8192-bit length, and

it affects 3856 coefficients, i.e., the 47% of those used to hide the message itself.

This result is just obtained on a single run. A larger test should be conducted to compare the properties of

F5* with regard to the ones of F5. Nevertheless, this research activity is out of the scope of the snote.eu.com

project.

Bibliography

[1] A. Westfled, F5—A Steganographic Algorithm High Capacity Despite Better Steganalysis, I. S. Moskowitz

(Ed.): IH 2001, LNCS 2137, pp. 289–302, 2001.

[2] J. Fridrich, Steganography in the digital media, Cabridge University Press, pp. 119-122, 2010.

https://snote.eu.com/

